Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold
نویسندگان
چکیده
The constitutively active tyrosine kinase BCR-ABL is the underlying cause of chronic myeloid leukemia (CML). Current CML treatments rely on the long-term use of tyrosine kinase inhibitors (TKIs), which target the ATP binding site of BCR-ABL. Over the course of treatment, 20-30% of CML patients develop TKI resistance, which is commonly attributed to point mutations in the drug-binding region. We design a new class of peptide inhibitors that target the substrate-binding site of BCR-ABL by grafting sequences derived from abltide, the optimal substrate of Abl kinase, onto a cell-penetrating cyclotide MCoTI-II. Three grafted cyclotides show significant Abl kinase inhibition in vitro in the low micromolar range using a novel kinase inhibition assay. Our work also demonstrates that a reengineered MCoTI-II with abltide sequences grafted in both loop 1 and 6 inhibits the activity of [T315I]Abl in vitro, a mutant Abl kinase harboring the "gatekeeper" mutation which is notorious for being multidrug resistant. Results from serum stability and cell internalization studies confirm that the MCoTI-II scaffold provides enzymatic stability and cell-penetrating properties to the lead molecules. Taken together, our study highlights that reengineered cyclotides incorporating abltide-derived sequences are promising substrate-competitive inhibitors for Abl kinase and the T315I mutant.
منابع مشابه
A type-II kinase inhibitor capable of inhibiting the T315I "gatekeeper" mutant of Bcr-Abl.
The second generation of Bcr-Abl inhibitors nilotinib, dasatinib, and bosutinib developed to override imatinib resistance are not active against the T315I "gatekeeper" mutation. Here we describe a type-II T315I inhibitor 2 (GNF-7), based upon a 3,4-dihydropyrimido[4,5-d]pyrimidin-2(1H)-one scaffold which is capable of potently inhibiting wild-type and T315I Bcr-Abl as well as other clinically r...
متن کاملPharmacophore Modeling of Nilotinib as an Inhibitor of ATP-Binding Cassette Drug Transporters and BCR-ABL Kinase Using a Three-Dimensional Quantitative Structure–Activity Relationship Approach
Nilotinib (Tasigna) is a tyrosine kinase inhibitor approved by the FDA to treat chronic phase chronic myeloid leukemia patients. It is also a transport substrate of the ATP-binding cassette (ABC) drug efflux transporters ABCB1 (P-glycoprotein, P-gp) and ABCG2 (BCRP), which may have an effect on the pharmacokinetics and toxicity of this drug. The goal of this study was to identify pharmacophoric...
متن کاملDevelopment of a protease-resistant reporter to quantify BCR-ABL activity in intact cells.
A peptidase-resistant ABL kinase substrate was developed by identifying protease-susceptible bonds on an ABL substrate peptide and replacing flanking amino acids with non-native amino acids. After an iterative design process, the lead, or designed, peptide X-A possesses a six-fold longer life in a cytosolic lysate than that of the starting peptide. The catalytic efficiency (kcat/KM) of purified...
متن کاملEvaluation of the Effect of Curcumin and Imatinib on BCR-ABL Expression Gene in Chronic Human k562 Cells
Background and Aims: Detection of overexpression in tumor-inhibiting genes provides valuable information for leukemia diagnosis and prognosis. Chronic myeloid leukemia (CML) is a stem cell disorder determined by a well-defined genetic anomaly involving BCR-ABL translocation in the Philadelphia chromosome. Curcumin is a chemo-preventive agent for the primary cancer targets, such as the breast, p...
متن کاملLeukemia Cells via the Mammalian Target of Rapamycin Ribosomal Protein S6 and 4E-BP1 in Chronic Myelogenous Bcr-Abl Kinase Modulates the Translation Regulators
Identification of signaling pathways downstream of Abl tyrosine kinase may increase our understanding of the pathogenesis of chronic myelogenous leukemia (CML) and suggest strategies to improve clinical treatment of the disease. By combining the use of a phosphospecific antibody recognizing a substrate motif of serine/threonine kinases with bioinformatics, we found that the translational regula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015